Time discretization versus state quantization in the simulation of a one-dimensional advection–diffusion–reaction equation

 

Autores
Bergero, Federico; Fernandez, Joaquin; Kofman, Ernesto Javier; Portapila, Margarita Isabel
Tipo de recurso
artículo
Estado
Versión publicada
Año de publicación
2016
País
Argentina
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
Repositorio
CONICET Digital (CONICET)
Descripción
In this article, we study the effects of replacing the time discretization by the quantization of the state variables on a one-dimensional (1D) advection–diffusion–reaction (ADR) problem. For that purpose the 1D ADR equation is first discretized in space using a regular grid, to obtain a set of time-dependent ordinary differential equations (ODEs). Then we compare the simulation performance using classic discrete time algorithms and using quantized state systems (QSS) methods. The performance analysis is done for different sets of diffusion and reaction parameters and also changing the space discretization refinement. This analysis shows that, in advection–reaction-dominated situations, the second-order linearly implicit QSS method outperforms all of the conventional algorithms (DOPRI, Radau and DASSL) by more than one order of magnitude. © 2015, The Author(s). All rights reserved.
Idioma
inglés
OAI Identifier
oai:ri.conicet.gov.ar:11336/52486
Enlace del recurso
http://hdl.handle.net/11336/52486
Nivel de acceso
Acceso abierto
Materia
ADVECTION–DIFFUSION–REACTION EQUATION
NUMERICAL SIMULATION
QUANTIZATION-BASED INTEGRATION METHODS
Ciencias de la Computación
Ciencias de la Computación e Información
CIENCIAS NATURALES Y EXACTAS
Matemática Pura
Matemáticas
CIENCIAS NATURALES Y EXACTAS