Zeros of combinations of Bessel functions and the mean charge of graphene nanodots

 

Autores
Beneventano, Carlota Gabriela; Fialkovsky, I. V.; Santangelo, Eve Mariel
Tipo de recurso
artículo
Estado
Versión publicada
Año de publicación
2016
País
Argentina
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
Repositorio
CONICET Digital (CONICET)
Descripción
We establish some properties of the zeros of sums and differences of contiguous Bessel functions of the first kind. As a by-product, we also prove that the zeros of the derivatives of Bessel functions of the first kind of different orders are interlaced the same way as the zeros of the Bessel functions themselves. As a physical motivation, we consider gated graphene nanodots subject to Berry–Mondragon boundary conditions. We determine the allowed energy levels and calculate the mean charge at zero temperature. We discuss its dependence on the gate (chemical) potential in detail and also comment on the effect of temperature.
Idioma
inglés
OAI Identifier
oai:ri.conicet.gov.ar:11336/55532
Enlace del recurso
http://hdl.handle.net/11336/55532
Nivel de acceso
Acceso abierto
Materia
BESSEL FUNCTION
CIRCULAR BILLIARD
GRAPHENE
QUANTUM NANODOT
Astronomía
Ciencias Físicas
CIENCIAS NATURALES Y EXACTAS